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The magnetograph transformation is introduced and employed to obtain sol- 
utions for plane, rotating, viscous, incompressible flows with orthogonal magnetic 
and velocity fields. 

1. INTRODUCTION 

A vast amount of research work has been done to analyze the motion 
of an electrically conducting fluid moving in a magnetic field since the early 
theoretical work of Alfv~n. In recent years, the analysis of flow equations 
for the incompressible MHD flow of inviscid and viscous fluids having 
infinite electrical conductivity has been undertaken in various works. 

In 1846 Hamilton coined the word "hodograph"  for a velocity locus 
associated with a moving particle. If the components of Velocity are u~(t), 
u2(t), and u3(t), the hodograph is the locus of a point whose position 
coordinates in an auxiliary space are ui(t), i = 1, 2, 3. This amounts to using 
the velocity components ui as the independent variables in terms of which 
everything else, including the original position coordinates x~, is to be 
expressed. 

If the magnetic field vectors of an MHD fluid is laid off from a fixed 
point, the extremities of these vectors trace out a curve, called the magneto- 
graph. Here we introduce a magnetograph transformation analogous to the 
hodograph one Chandra and Garg (1977) and obtain an equivalent linear 
system by interchanging the roles of dependent and independent variables. 

Singh et al. (1986) determined the flow geometries when the velocity 
magnitude is constant along the individual streamlines. Gopal Krishna and 
Ramchandra Rao (1975) and Indrasena (1978) discussed the effect of 
rotation in a steady flow of an incompressible viscous fluid. Singh and Singh 
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(1984) determined intrinsic relations and studied steady rotating hydromag- 
netic flows. 

In the present work, using the magnetograph transformation, we obtain 
a linear partial differential equation of second order, a solution of which 
leads to the magnetic field of a flow. This approach is illustrated and two 
different solutions are obtained. 

2. FLOW EQUATIONS 

The steady flow in a rotating reference frame of a homogeneous, 
incompressible viscous fluid with infinite electrical conductivity is governed 
by the system of equations (Singh and Singh, 1984; Puri and Kulshesta, 1976) 

div p f  = 0 (2.1) 

p[(~5, grad)~3 + 2 ~  x zT+ ~ x (~ x ~)] 

= -g rad  p + ~7 V 2z5 +/~ cur l /4  x/-I (2.2) 

curl(z5 x/-I) = 0 (2.3) 

div/-t = 0 (2.4) 

where 13 denotes the velocity vector, p the fluid pressure, ~ the radius vector, 
the angular velocity vector, ~ the coefficient of viscosity,/~ the constant 

magnetic permeability p the density, and /-I the magnetic field vector. In 
the case of plane flows w i t h / 4  in the plane of flow and orthogonal to the 
velocity vector ~, we have 

uH] + vH: = 0 (2.5) 

i.e., 

KH2 - K H t  
u = H2 , v =  H2 (2.7) 

where 

I7" = (u, v) and /-t = (H,,/-/2) 

From (2.3) we find that 

uHz -  vH] = K (2.6) 

where K is an arbitrary nonzero constant. 
Equations (2.5) and (2.6) yield 

KH2 - KH1 

u Hzl+n~,  HZ+H~ 
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where 

H2= 2 2 H1+H2 

Employing (2.7) in (2.1), we obtain 

(H2-H~)  OH'+2HaH2 (H2-H2)  OH2=o (2.8) 
Oy ay ] Ox 

From equation (4), we have 

OH~ + 01-12 = 0 (2.9) 
Ox Oy 

Equations (2.8) and (2.9) form a system of two nonlinear partial differential 
equations in HI and /-/2 by means of the magnetograph transformation, 
where H1 and /-/2 are regarded as independent variables with x and y as 
functions of H~ and/-/2. Equations (2.8) and (2.9) become 

Oy Ox 
- - +  --0 (2.11) 
OH20HI  

provided that 

a(H,, H:) 
# 0  

o(x, y) 

Equation (2.11) implies the existence of a function 4,(H1,/-/2) such that 

o4, 04, 
- y ,  = - x  ( 2 . 1 2 )  

O H~ 0142 

Using (2.12) in (2.10), we get 

02d~ 02d~ 2 
(H~-H~)=--~.~+4H, H2 -~--_ (H~_U2 ~ a 4, 

OH~ OH1 01-12 . .  lJ OH---~l = 0 (2.13) 

Introducing polar coordinates (H, 0) in the (H~, H~) plane we find that 
equation (2.13) transforms as 

024, 1 024, 1 a4, 
=0 (2.14) OH 2 H 2 002 H OH 
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Known solutions of (2.14) can be used to obtain some particular solutions 
for the plane orthogonal flows. Given a solution (H, 0) of (2.14), from 
(2.12) we have 

a~ o4, 
x =  0/-/2' Y all1 (2.15) 

Knowing x = x ( H l ,  H2) and y = y(H1,  H2), we can express Ha and H2 as 
functions of  x and y provided that O(x, y)/O(H1,/42) # 0. However, the 
velocity field thus obtained must satisfy the momentum equation (2.2), 
which may be written as 

p[(curl ~7+ 2~)  x 13] + g r a d ( P  +�89 2) 

= ~ c u r l / ~ x / - ) -  ~) curl curl ,3 (2.16) 

where P = p - � 8 9  x ~3l 2 is the reduced pressure. 
In the case of plane flows (2.16) gives us two scalar equations 

r 1 ~ f -  p~v - 2pwv + p, jH2 = - a___Bax (2.17) 

a~ OB 
"~X - pCu - 2pwu + p, jH1 = 07 (2.18) 

where f is the current density, ~ is the vorticity when the intensity of rotation 
is in the direction of the vorticity vector, and B = P+�89 2 is the Bernoulli 
function. 

3. SOLUTIONS 

In this section we investigate two flow problems as applications of 
(2.14). Let a simple solution of (2.14) be given by 

,/H2\ 
~b= koO= kotan- ~-~l ) (3.1) 

where /Co is a positive constant. 
From (2.15), we get 

04) koH, O& koH2 
x 01-12 H 2 ' Y OH~ H a (3.2) 

which imply that 

ko ko 
H, = - 7 ~ x ,  H : =  - 7 ~ y  (3.3) 

where r 2 = x 2 + y2. 



Magnetograph Transformation in MFD 1141 

From (2.7), the velocity field '~ is given by 

(1 = ( - k y /  ko, kx/  ko) (3.4) 

The vorticity ~ and current density j- can be expressed as 

f = 0 v  3 u = 2 k  (3.5) 
Ox Oy ko 

f =  OH2 OHm= 0 (3.6) 
Ox Oy 

From the integrability condition for B with the use of (2.17), (2.18), and 
(3.3)-(3.6), we obtain 

Ow Ow 
x --~y - Y -~x = O (3.7) 

The most general solution of (3.7) is given by 

w=y21Fo - 1 , . . . , -  = (3.8) 
n=o Ln 

where lFo is the Gauss hypergeometric function (Slater, 1966). Taking n = 1, 
we find that 

w = cl(x2+y 2) = clr 2 (3.9) 

where cl is an arbitrary constant. 
Using (3,3)-(3.6) and (3.9), we find that equations (2.17) and (2.18) 

reduce to 

OB 2pK2x Pk~Kx(x2 + y2) 
Ox k2o ~- 2 

(3.10) 
aB 2 2 p K  2 p C l K  . . 

- 7 Y + ~ .  y(x~+y~) 
Oy ,.o ,~o 

which implies that 

B = p K 2  r2+ p c ' K [ x a + y 4 '  2 2~ 
k 2 ko ~ 2 •  y ) + C 2  (3.11) 

where c2 is an arbitrary constant, and the reduced pressure is given by 

1 K 2 r z + p c , K ( x 4 2 Y 4 + x e y 2 ) + c  2 (3.12) 
P = 2  P-~o ko 

Another simple solution of (2.14) is given by 
i 2 Cb = ~K~ ( H ~ + H~) + K2 (3.13) 

where K1 and K 2 a r e  arbitrary constants. 
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In  this case we have 

o~ o4, 
x . . . .  KIH2, y =  =K~H1 (3.14) 

oH2 alia 

and  therefore  the magne t ic  field is given by  

Ha = y / K 1 ,  H2 = - x / K ,  (3.15) 

These  relat ions represents  a c i rculatory flow. Further ,  we have 

xKK1 K K l y  
U - -  r 2  ~ I.)  ~ r2 

Ov Ou 
s r . . . . .  0 (3.16) 

Ox Oy 

f oH~ oI-I~=_~ 
ax Oy K1 

Using (3.16) in (2.17) and  (2.18) and f rom the integrabil i ty condi t ion for  
B, we have  

aw aw 
y ~ y  + x - - = 0 0 x  (3.17) 

The  mos t  general  solut ion o f  (3.17) is given by  

w=2F1 a;  b; c; = n=o k n ( c ) ,  x n ' x r  (3.18) 

where  

ab z a ( a + l ) b ( b + l )  z 2 
2Fl[a, b; c; z] = 1 + - -  - - +  - - + "  �9 �9 

c L1 c ( c +  1) L2 

is the Gauss  hype rgeomet r i c  funct ion (Slater, 1966), a, b, and  c are constants  
(c r 0), and  

( a ) ,  = a ( a  + 1 ) . . - ( a + n -  1), L n = n ( n - 1 ) . . . 1  

Taking  the mos t  par t icular  case when n = 1, we find that  

w = c3y/x, x # 0 (3.19) 

where  c3 is an arbi t rary  constant .  
N o w  (2.17) and (2.18) reduce  respect ively to 

0B y2 2/x 
- - =  -2pKK1e3 2 x (3.20) 
Ox x ( x 2 + y  2) KI  

oB 2pc3KK1 Y 2# O y -  x : + y  2 k~ y (3.21) 
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w hich  imp l i e s  tha t  

X 2 /~ r 2 
B = c4 - pKK~c3 In ~-~-  K---~ (3.22) 

where  c4 is a n  a rb i t r a ry  cons t an t .  R e d u c e d  p re s su re  is g iven  b y  

x 2 u r2_1  KK~ 
P = c 4 - c 3 p K K l l n - - - y - ~  p r2 (3.23) 

r K1 2 

A C K N O W L E D G M E N T  

I t h a n k  C S I R  N e w  De l h i  for  p r o v i d i n g  f i nanc i a l  ass i s tance .  
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